left quasigroup

基本解釋左擬群

網(wǎng)絡(luò)釋義

1)left quasigroup,左擬群2)left regular quasi-semigroups,左正則擬半群3)left group,左群4)left C-semigroup,左C-半群5)Left C-semigroups,左C-半群6)left inverse semigroup,左逆半群

用法和例句

The necessary and sufficient conditions for the semidirect product and wreath product of two left regular quasi-semigroups to be left regular quasi-semigroups are given.

給出了兩個(gè)左正則擬半群S和T的半直積S×αT和圈積SωXT是左正則擬半群的充分必要條件。

The equivalent character that a semigroup is a quasi-inflation of a left group;

半群是左群的擬膨脹的等價(jià)刻畫(huà)

The necessary and sufficient conditions for the semidirect products and the wreath products of two semigroups to be a left group are given.

給出了兩個(gè)一般的即未必含有單位元的半群的半直積和圈積是左群的充分必要條件,并討論了左群的最小群同余與半直積的最小群同余之間的關(guān)系。

In this paper,we chiefly study Cayley graphs of strong semilattices of left groups and obtain some results for structures and properties of this graphs.

研究了左群的強(qiáng)半格的Cayley圖的結(jié)構(gòu)和性質(zhì),給出了一個(gè)有向圖是左群強(qiáng)半格的Cayley圖的充分條件。

In this paper,we investigate another structure of left C-semigroups by means of the wreath product,and the wreath product structure of left C-semigroups is obtained.

利用半群圈積的概念得到了左C-半群的又一種結(jié)構(gòu)——圈積結(jié)構(gòu)。

Shum extended Clifford semigroups in the class of regular semigroups and gave the definition of left C-semigroups in 1991.

1991年,朱聘瑜,郭聿琦和岑嘉評(píng)在正則半群范圍內(nèi),對(duì)Clifford半群進(jìn)行了推廣,定義了所謂左C-半群,不僅對(duì)左C-半群的特征進(jìn)行了刻畫(huà),而且給出了左C-半群的ξ-積結(jié)構(gòu)。

A construction of left inverse semigroups;

左逆半群的構(gòu)造(英文)

最新行業(yè)英語(yǔ)

行業(yè)英語(yǔ)